Name \qquad Date \qquad
1.
a. We define x as a year between 2008 and 2013, and y as the total number of smartphones sold that year, in millions. The table shows values of x, and corresponding y values.

Year (x)	2008	2009	2010	2011	2012	2013
Number of smartphones in millions (y)	3.7	17.3	42.4	90	125	153.2

i. How many smartphones were sold in 2009?
ii. In which year were 90 million smartphones sold?
iii. Is y a function of x ? Explain why or why not.
b. Randy began completing the table below to represent a particular linear function. Write an equation to represent the function he used, and complete the table for him.

Input (x)	-3	-1	0	$\frac{1}{2}$	1	2	3
Output (y)	-5		4				13

c. Create the graph of the function in part (b).

d. At NYU in 2013, the cost of the weekly meal plan options could be described as a function of the number of meals. Is the cost of the meal plan a linear or non-linear function? Explain.

8 meals: \$125/week
10 meals: \$135/week
12 meals: \$155/week
21 meals: \$220/week
2. The cost to enter and go on rides at a local water park, Wally's Water World, is shown in the graph below.

A new water park just opened named Tony's Tidal Takeover. You haven't heard anything specific about how much it costs to go to this park, but some of your friends have told you what they spent. The information is organized in the table below.

\# of rides	0	2	4	6
\$ spent	12	13.50	15	16.50

Each park charges a different admission fee and a different fee per ride, but the cost of each ride remains the same.
a. If you only have $\$ 14$ to spend, which park would you attend (assume the rides are the same quality)? Explain.
b. Another water park, Splash, opens and they charge an admission fee of $\$ 30$ with no additional fee for rides. At what number of rides does it become more expensive to go to Wally's Water Park than Splash? At what number of rides does it become more expensive to go to Tony's Tidal Takeover than Splash?
c. For all three water parks, the cost is a function of the number of rides. Compare the functions for all three water parks in terms of their rate of change. Describe the impact it has on the total cost of attending each park.
3. For each part below, leave your answers in terms of π.
a. Determine the volume for each three-dimensional figure shown below.

b. You want to fill the cylinder shown below with water. All you have is a container shaped like a cone with a radius of 3 inches and a height of 5 inches; you can use this cone-shaped container to take water from a faucet and fill the cylinder. How many cones will it take to fill the cylinder?

c. You have a cylinder with a diameter of 15 inches and height of 12 inches. What is the volume of the largest sphere that will fit inside of it?

A Progression Toward Mastery
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Assessment } & \begin{array}{l}\text { STEP 1 } \\ \text { Missing or } \\ \text { incorrect answer } \\ \text { Task Item } \\ \text { and little evidence } \\ \text { of reasoning or } \\ \text { application of } \\ \text { mathematics to } \\ \text { solve the problem. }\end{array} & \begin{array}{l}\text { STEP 2 } \\ \text { Missing or incorrect } \\ \text { answer but } \\ \text { evidence of some } \\ \text { reasoning or } \\ \text { application of } \\ \text { mathematics to } \\ \text { solve the problem. }\end{array} & \begin{array}{l}\text { STEP 3 } \\ \text { A correct answer } \\ \text { with some evidence } \\ \text { of reasoning or } \\ \text { application of } \\ \text { mathematics to } \\ \text { solve the problem, } \\ \text { or an incorrect }\end{array} & \begin{array}{l}\text { STEP 4 } \\ \text { A correct answer } \\ \text { supported by } \\ \text { substantial }\end{array} \\ \text { evidence of solid } \\ \text { reasoning or } \\ \text { application of } \\ \text { mathematics to }\end{array}\right\}$
$\left.\begin{array}{|c|c|l|l|l|l|}\hline \text { c } & \begin{array}{l}\text { Student makes little or } \\ \text { no attempt to solve the } \\ \text { problem. } \\ \text { Student may have } \\ \text { graphed some or all of } \\ \text { the input/outputs } \\ \text { given. }\end{array} & \begin{array}{l}\text { The input/outputs do } \\ \text { not appear to be linear. } \\ \text { The student graphs the } \\ \text { input/outputs incorrectly } \\ \text { (e.g., (4,0) instead of } \\ \text { (0,4)). }\end{array} & \begin{array}{l}\text { The input/outputs } \\ \text { appear to be linear. } \\ \text { The student may or may } \\ \text { not have graphed the } \\ \text { input/outputs correctly } \\ \text { (e.g., (4,0) instead of } \\ \text { (0,4)). }\end{array} & \begin{array}{l}\text { Student graphs the } \\ \text { input/outputs correctly. } \\ \text { The input/outputs } \\ \text { appear to be linear. }\end{array} \\ \hline \text { d } & \begin{array}{l}\text { Student does not } \\ \text { attempt the problem or } \\ \text { left the problem blank. } \\ \text { Student may or may } \\ \text { not have made a } \\ \text { choice. }\end{array} & \begin{array}{l}\text { Student determines the } \\ \text { No explanation is given. } \\ \text { meal plan is linear or } \\ \text { non-linear. } \\ \text { No explanation is given } \\ \text { or the explanation does } \\ \text { not include any } \\ \text { mathematical reasoning. }\end{array} & \begin{array}{l}\text { Student determines } \\ \text { correctly the meal plan is is } \\ \text { non-linear. } \\ \text { Explanation includes } \\ \text { some mathematical } \\ \text { reasoning. } \\ \text { Explanation may or may } \\ \text { include reference to the } \\ \text { graph. }\end{array} & \begin{array}{l}\text { Student determines } \\ \text { correctly that the meal } \\ \text { plan is non-linear. } \\ \text { Explanation includes } \\ \text { substantial mathematical } \\ \text { reasoning. } \\ \text { Graph may or may not } \\ \text { be used as part of the }\end{array} \\ \text { reasoning. }\end{array}\right\}$

			of the parks, but draws incorrect conclusions.	mistakes in the description.	the comparison. Student describes the impact of the rate of change on the total cost for each park.
3	a $\text { 8.G.C. } 9$	Student finds 0 to 1 of the volumes correctly. Student may or may not have included correct units. Student may have omitted π from one or more of the volumes (i.e., the volume of the cone is 48). Student does not attempt the problem or leaves it blank.	Student finds 2 out of 3 volumes correctly. Student may or may not have included correct units. Student may have omitted π from one or more of the volumes (i.e., the volume of the cone is 48).	Student finds the volumes of all three figures correctly. Student does not include the correct units. Student may have omitted π from one or more of the volumes (i.e., the volume of the cone is 48).	Student finds the volumes of all three figures correctly, that is the volume of the cone is $48 \pi \mathrm{~mm}^{3}$, the volume of the cylinder is 21.2π cm^{3} and the volume of the sphere is $36 \pi \mathrm{in}^{3}$. Student includes the correct units.
	b $\text { 8.G.C. } 9$	Student does not attempt the problem or leaves the problem blank.	Student does not calculate the number of cones correctly. Student makes significant calculation errors. Student may have used the wrong formula for volume of the cylinder or the cone. Student may not have answered in a complete sentence.	Student may have calculated the number of cones correctly, but does not calculate the volume of the cylinder or cone correctly (e.g., volume of the cone is 192 , omitting the π). Student calculates the volume of a cone correctly at $15 \pi \mathrm{in}^{3}$ or the volume of the cylinder correctly at 192π in 3, but not both. Student may have used incorrect units. Student may have made minor calculation errors. Student may not answer in a complete sentence.	Student answers correctly that it will take 12.8 cones to fill the cylinder. Student calculates the volume of a cone correctly at 15π in 3 and the volume of the cylinder correctly at 192π in 3. Student answers in a complete sentence.
	C $\text { 8.G.C. } 9$	Student does not attempt the problem or leaves the problem blank.	Student does not calculate the volume correctly. Student may have used the diameter instead of the radius for calculations. Student may have made calculation errors. Student may or may not have omitted π. Student may or may not have included the units.	Student calculates the volume correctly, but does not include the units or includes incorrect units (e.g., cm^{2}). Student uses the radius of 6 to calculate the volume. Student may have calculated the volume as 288 (π is omitted).	Student calculates the correct volume of 288π cm^{3}. Student uses the radius of 6 to calculate the volume. Student includes correct units.

Module 5:
Examples of Functions from Geometry

Name \qquad Date \qquad
1.
a. We define x as a year between 2008 and 2013 and y as the total number of smartphones sold that year, in millions. The table shows values of x and corresponding y values.

Year (x)	2008	2009	2010	2011	2012	2013
Number of smartphones in millions (y)	3.7	17.3	42.4	90	125	153.2

How many smartphones were sold in 2009?
17.3 MILLION SMARTPHONES WERE SOLD IN 2019

In which year were 90 million smartphones sold?
90 MILIION SMARTPHONES WERE SOLD in z OIL

Is y a function of x ? Explain why or why not.
Yes it is a function because for each input there IS EXACTLY ONE OTPOT. SPECIFiCALLY, ONLY ONE NUMBER WII BE ASSIGNED TO REPRESENT THE NUMBER OF SMART PHINES SOLD in THE GIVEN YEAR.
b. Randy began completing the table below to represent a particular linear function. Write an equation to represent the function he was using and compete the table for him.

Input (x)	-3	-1	0	$\frac{1}{2}$	1	2	3
Output (y)	-5	1	4	$\frac{11}{2}$	7	10	13

$$
y=3 x+4
$$

c. Create the graph of the function in part (b).

d. At NYU in 2013, the cost of the weekly meal plan options could be described as a function of the number of meals. Is the cost of the meal plan a linear or non-linear function? Explain.

8 meals: \$125/week
10 meals: $\$ 135 /$ week
12 meals: \$155/week
21 meals: \$220/week
$\frac{125}{8}=15.625 \quad \frac{135}{10}=13.5 \quad \frac{155}{12}=12.917 \quad \frac{220}{21}=10.476$
THE COST OF THE MEAL PLAN IS A NON-LINEAR
FUNCTION. THE COST OF EACH MEAL IS DIFFERENT.
BASED ON THE PLAN. FOR EXAMPLE, ONE PLAN CHARGES ABONT \$16 PER MEAL, ANOTMER PLAN CHARCGES JUST $\$ 10$. ALSO, WHEN THE DATA IS GRAPHED, THE POINTS DO NOT FALL IN A LINE.

2. The cost to enter and go on rides at a local water park, Wally's Water World, is shown in the graph below.

LET x REPRESENT HE \#
OF RIDES LET W REPRESENT The

TOTAL COST AT
WALLY WATER WORLD

$$
\omega=2 x+8
$$

A new water park just opened named Tony's Tidal Takeover. You haven't heard anything specific about how much it costs to go to this park but some of your friends have told you what they spent. The information is organized in the table below; your friends told you they paid an admission fee to get in and then the same amount for each ride.

\# of rides	0	2	4	6
\$ spent	12	13.50	15	16.50
1.50				

LET x REPRESENT
THE \# OF RIDES
LET T REPRESENT
TOTAL COST AT
TONY TIDAL TAKENER
$T=0.75 x+12$
a. If you only have $\$ 14$ to spend, which park would you attend (assume the rides are the same quality)? Explain.

WALLY's $W=2 x+8$ TONY'S $T=0.75 x+12$	AT WAUY'S, YON CAN GO ON 3 RIDES		
$14=2 x+8$	$14=0.75 x+12$	WITH $\$ 14$, AT TONY'S JUST 2 RIDES.	
$6=2 x$	$2=0.75 x$	THEREFRE I WOLD GO TO WALLY'S	
$3=x$	$2.67 \approx x$		

COMMON
b. Another water park, Splash, opens and they charge an admission fee of $\$ 30$ with no additional fee for rides. At what number of rides does it become more expensive to go to Wally's Water Park than splash? At what number of rides does it become more expensive to go to Tony's Tidal Takeover than Splash?
let S REPRESENT TOTAL COST AT SPLASH, $S=30$.

c. For all three water parks, the cost is a function of the number of rides. Compare the functions for all three water parks in terms of their rate of change. Describe the impact it has on the total cost of attending each park.

$$
\begin{aligned}
& \text { WAUY'S RATE OF CHANGE IS } 2, \$ 2 \text { PER RIDE. } \\
& \text { TDNY'S RATE OF CHANGE IS } 0.75, \$ 0.75 \text { PER RIDE. }
\end{aligned}
$$ SPLASH'S RATE OF CHANGE IS 0 , SO EXTRA PER RIDE. WALLY'' HAS THE GREATEST RATE OF CHANGE. THAT MENE THAT THE TOTAL COST AT WALLY'S WIL INCREASE THE FASTEST AS WE GO ON MORE RIDES. AT TONY'S, THIS RATE OF CMANEIE IS JUST 0.75 SO THE TOTAL COST INCREASES WITH THE NUMBER OF RIDES WE GO ON, RUT NOT A QUICKLY AS WALES. SPASM HINS A RATE OF CHANGE OF ZERO. THE NUMBER OF RIDES WE GO ON DOES NO IMPACT THE TOTAL COST AT All.

3.

a. Determine the volume for each of the three-dimensional figures shown below.

$$
\begin{aligned}
& V=\frac{1}{3} 45(16)(9) \\
& =(16) \text { (3) (17) } \\
& =4340 \mathrm{~mm}^{3}
\end{aligned}
$$

$v-\frac{4}{3} \pi\left(3^{3}\right)$
$=4(9) \pi$
$==36 \pi \mathrm{~T} \mathrm{in}^{3}$
b. You want to fill the cylinder shown below with water. All you have is a container shaped like a cone with a radius of 3 inches and a height of 5 inches; you can use this cone-shaped container to take water from a faucet and fill the cylinder. How many cones will it take to fill the cylinder?

$$
\begin{aligned}
\text { VOUME OF CYLINDER } & =9(64)(3) \\
& =192 \pi \mathrm{in}^{3} \\
\text { VOLUME OF CONE } & =\frac{1}{3} \pi(9)(5) \\
& =\frac{45}{3} \pi \\
& =15 \pi \mathrm{in}^{3}
\end{aligned}
$$

$$
\frac{92 \pi}{15 \pi}=\frac{192}{15}=12.8
$$

IT TAKES 12.8 CONES OF The GIVEN SIZE TO FILe THE CYLINDER.
c. You have a cylinder with a diameter of 15 cm and height of 12 cm . What is the volume of the largest sphere that will fit inside of it?

THE CHUNDER HAS RANIS OF 7.5 cm , BOT THE MElGHT is JUST 12 cm . TART MEANS THE MAXIMUM RADIUS FA THE SPHERE IS 6 cm . ANYTHING LARGER WOULD NO FIT IN THE CYLINDER. THEN THE VOLUME OF THE LARGEST SPHERE THAT WILL FIT IN THE CYLINDER is $V=\frac{4}{3} \pi\left(b^{3}\right)$

$$
\begin{aligned}
& =\frac{4}{3} \pi(210) \\
& =288 \pi \mathrm{~cm}^{3} .
\end{aligned}
$$

