Proofs of Trigonometric Identities V- sin 3x = 3sin x - 4sin^3 x

Lemma: $\sin 3x = 3\sin(x) - 4\sin^3(x)$

 

Proof: Use the angle addition formula on the argument of the expression:

 

$\sin 3x = \sin (2x + x)$

 

Then:

 

$\sin(2x + x) = \sin(2x)\cos(x) + \sin(x)\cos(2x)$

 

Use the double-angle identites (for your reference, $\sin(2x) = 2\sin(x)\cos(x)$ and $\cos(2x) = 1 - 2\sin^2(x)$:

 

$\sin(3x) = 2\sin(x)\cos(x)\cos(x) + \sin(x)(1 - 2\sin^2(x))$

 

Simplify:

 

$\sin(3x) = 2\sin(x)\cos^2(x) + \sin(x) - 2\sin^3(x)$

 

Use Pythagoras's Identity on the last $\cos^2$ factor to write the entire RHS in terms of sine:

 

$\sin(3x) = 2\sin(x)(1 - \sin^2(x)) + \sin(x) - 2\sin^3(x) = 2\sin(x) - 2\sin^3(x) + \sin(x) - 2\sin^3(x) = 3\sin(x) - 4\sin^3(x)$